事情的起因是感觉目前项目中的参数校验方法写的太简单了,很多时候需要在server层再if else处理,于是就动手准备写一个好用一点的,可以自定义校验参数规则的参数校验器,考虑到要可以灵活的配置就萌生了大概的印象:
- 使用map - 参数A:ruleA,参数B-ruleB..等等,对参数进行规则绑定
- 使用装饰器
- 可扩展,可以自定义校验规则
于是第一个版本实现如下:
版本1
# -*- coding:utf-8 -*-__author__ = "aleimu"__date__ = "2018-12-6"__doc__ = "一个实用的入参校验装饰器--针对目前,前端 url?&a=1&b=2或-d'a=1&b=2c=qwe'形式的非json(所有参数都是str类型)" \ "入参的校验"import copyimport tracebackfrom collections import OrderedDictfrom functools import wrapsfrom flask import Flask, json, jsonify, requestapp = Flask(__name__)def verify_args(need=None, length=None, check=None, strip=True, default=(False, None), diy_func=None, release=False): """ 约束: 1. 简化了传参校验,使用位置传参或者关键词传参(一个参数对应一个参数),不允许使用one to list等python高级传参特性 2. 所有的参数都是str/unicode类型的,前端没有使用json带参数类型的入参方式 :param need: 必须参数,且不能为None或者"" :param length: 参数长度范围 :param check: str的常用类方法/属性如下: isalnum 判断字符串中只能由字母和数字的组合,不能有特殊符号 isalpha 字符串里面都是字母,并且至少是一个字母,结果就为真,(汉字也可以)其他情况为假 isdigit 函数判断是否全为数字 :param strip:对字段进行前后过滤空格 :param default:将"" 装换成None :param diy_func:自定义的对某一参数的校验函数格式: {key:func},类似check, diy_func={"a": lambda x: x + "aa"}) :param release:发生参数校验异常后是否依然让参数进入主流程函数 :return: """ def wraps_1(f): @wraps(f) def wraps_2(*args, **kwargs): if release: args_bak = args[:] kwargs_bak = copy.deepcopy(kwargs) # 下面流程异常时,是否直接使用 原参数传入f todo print ("in", args, kwargs) args_template = f.func_code.co_varnames print("args_template:", args_template) args_dict = OrderedDict() req_args_need_list = [] req_args_types_list = [] try: for i, x in enumerate(args): args_dict[args_template[i]] = x sorted_kwargs = sort_by_co_varnames(args_template, kwargs) args_dict.update(sorted_kwargs) print("args_dict:", args_dict) # need if need: for k in need: if k not in args_dict: req_args_need_list.append(k) else: if args_dict[k] == None or args_dict[k] == "": req_args_need_list.append(k) if req_args_need_list: return False, "%s is in need" % req_args_need_list # strip if strip: for k in args_dict: if args_dict[k]: args_dict[k] = args_dict[k].strip() # length if length: for k in args_dict: if k in length: if not (len(args_dict[k]) >= length[k][0] and len(args_dict[k]) <= length[k][1]): return False, "%s length err" % k # default: if default[0]: for x in args_dict: if args_dict[x] == "": args_dict[x] = default[1] # check if check: for k in check: check_func = getattr(type(args_dict[k]), check[k], None) if not (k in args_dict and check_func and check_func(args_dict[k])): req_args_types_list.append(k) if req_args_types_list: return False, "%s type err" % req_args_types_list # diy_func if diy_func: for k in args_dict: if k in diy_func: args_dict[k] = diy_func[k](args_dict[k]) except Exception as e: print("verify_args catch err: ", traceback.format_exc()) if release: return f(*args_bak, **kwargs_bak) else: return False, str(e) return f(*args_dict.values()) return wraps_2 return wraps_1def sort_by_co_varnames(all_args, kwargs): new_ordered = OrderedDict() for x in all_args: if x in kwargs: new_ordered[x] = kwargs[x] return new_ordered@app.route("/", methods=["GET", "POST", "PUT"])def index(): a = request.values.get("a") b = request.values.get("b") c = request.values.get("c") d = request.values.get("d") e = request.values.get("e") f = request.values.get("f") g = request.values.get("g") status, data = todo(a, b, c, d, e=e, f=f, g=g) if status: return jsonify({"code": 200, "data": data, "err": None}) else: return jsonify({"code": 500, "data": None, "err": data})@verify_args(need=['a', 'b', 'c'], length={"a": (6, 50)}, strip=True, check={"b": 'isdigit', "c": "isalnum"}, default=(True, None), diy_func={"a": lambda x: x + "aa"})def todo(a, b, c, d, e=' 1 ', f='2 ', g=''): return True, {"a": a, "b": b, "c": c, "d": d, "e": e, "f": f, "g": g}if __name__ == "__main__": app.run(host='0.0.0.0', port=6000, debug=True)"""# curl "http://127.0.0.1:6000/" -d "pwd=123&a=1111111&b=2&c=3&d=d&e=eeeeee&f=12345&g="{ "code": 200, "data": { "a": "1111111aa", "b": "2", "c": "3", "d": "d", "e": "eeeeee", "f": "12345", "g": null }, "err": null}# curl "http://127.0.0.1:6000/" -d "pwd=123&a=1111111&b=2&c=3346()*&d=d&e=eeeeee&f=12345&g="{ "code": 500, "data": null, "err": "['c'] type err"}# curl "http://127.0.0.1:6000/" -d "pwd=123&a=1111111&b=2&c=&d=d&e=eeeeee&f=12345&g=" { "code": 500, "data": null, "err": "['c'] is in need" } # curl "http://127.0.0.1:6000/" -d "pwd=123&a=1111111&b=2&c= 1 &d=d&e=eeeeee&f=12345&g=" { "code": 200, "data": { "a": "1111111aa", "b": "2", "c": "1", "d": "d", "e": "eeeeee", "f": "12345", "g": null }, "err": null } """
第一个版本切合了当前项目中经常遇到的校验问题,实现起来较简单,基本满足要求.
想要更通用点,更多校验规则一些,就需要每次为verify_args添加参数写if else了,嗯.....有点不优雅啊,于是去看github上有啥好的实现.找到了如下几个项目:- 嗯,1.6K的star,思路一致,实现的优雅,但是不好扩展啊....
- 额,Python Data Validation for Humans™. not for me....
- 嗯,思路一致,实现也简单,挺好扩展的,就用它了!
这里说说validator.py ,给个例子
from validator import Required, Not, Truthy, Blank, Range, Equals, In, validate# let's say that my dictionary needs to meet the following rules...rules = { "foo": [Required, Equals(123)], "bar": [Required, Truthy()], "baz": [In(["spam", "eggs", "bacon"])], "qux": [Not(Range(1, 100))] # by default, Range is inclusive}# then this following dict would pass:passes = { "foo": 123, "bar": True, # or a non-empty string, or a non-zero int, etc... "baz": "spam", "qux": 101}print validate(rules, passes)# (True, {})# but this one would failfails = { "foo": 321, "bar": False, # or 0, or [], or an empty string, etc... "baz": "barf", "qux": 99}print validate(rules, fails)# (False,# {# 'foo': ["must be equal to '123'"],# 'bar': ['must be True-equivalent value'],# 'baz': ["must be one of ['spam', 'eggs', 'bacon']"],# 'qux': ['must not fall between 1 and 100']# })
嗯,使用第一个版本封装一下validator.py就好了!考虑到需要写个dome来试试,就选了flask,嗯,对了,先去github 上搜一下 flask validator 没准已经有现成的呢,实现思路基本一致,但是......前几个star多的都不令人满意,还是自己造轮子吧.
先实现常见的在route上加装饰器版本,这样的话,就可以直接接收request收到的参数,然后直接校验了,有问题就直接返回错误给调用者,于是有了版本2版本2
rules_example = { "a": [Required, Equals("123")], # foo must be exactly equal to 123 "b": [Required, Truthy()], # bar must be equivalent to True "c": [In(["spam", "eggs", "bacon"])], # baz must be one of these options "d": [Not(Range(1, 100))], # qux must not be a number between 1 and 100 inclusive "e": [Length(0, maximum=5)], "f": [Required, InstanceOf(str)], "g": [Required, Not(In(["spam", "eggs", "bacon"]))], "h": [Required, Pattern("\d\d\%")], "i": [Required, GreaterThan(1, reverse=True, auto=True)], # auto 自动转换成float类型来做比较 "j": [lambda x: x == "bar"], "k": [Required, Isalnum()], # 判断字符串中只能由字母和数字的组合,不能有特殊符号 "l": [Required, Isalpha()], # 字符串里面都是字母,并且至少是一个字母,结果就为真,(汉字也可以)其他情况为假 "m": [Required, Isdigit()], # 判断字符串是否全为数字}def validator_wrap(rules, strip=True, diy_func=None): """装饰器版 - 只能检测是否符合规则,不能修改参数 :param rules:参数的校验规则,map :param strip:对字段进行前后空格检测 :param diy_func:自定义的对某一参数的校验函数格式: {key:func},类似check, diy_func={"a": lambda x: x=="aa"}) """ def decorator(f): @wraps(f) def decorated_func(*args, **kwargs): try: args_dict = OrderedDict() if request.values: args_dict.update(request.values) if request.json: args_dict.update(request.json) # strip if strip: for k in args_dict: if args_dict[k] and isstr(args_dict[k]): if args_dict[k][0] == " " or args_dict[k][-1] == " ": return jsonify({"code": 500, "data": None, "err": "%s should not contain spaces" % k}) # diy_func if diy_func: for k in args_dict: if k in diy_func: args_dict[k] = diy_func[k](args_dict[k]) # rules if rules: result, err = validate(rules, args_dict) if not result: return jsonify( {"code": 500, "data": None, "err": err}) except Exception as e: print("verify_args catch err: ", traceback.format_exc()) return jsonify({"code": 500, "data": None, "err": str(e)}) return f(*args, **kwargs) return decorated_func return decorator @app.route("/wrap", methods=["GET", "POST", "PUT"])@validator_wrap(rules=rules_example, strip=True) # 姿势 1:只能检测是否符合规则,不能修改参数,不符合就会直接返回json给调用者def wrap_example(): a = request.values.get("a") b = request.values.get("b") c = request.values.get("c") d = request.values.get("d") e = request.values.get("e") f = request.values.get("f") g = request.values.get("g") h = request.values.get("h") i = request.values.get("i") j = request.values.get("j") k = request.values.get("k") l = request.values.get("l") m = request.values.get("m") status, data = todo(a=a, b=b, c=c, d=d, e=e, f=f, g=g, h=h, i=i, j=j, k=k, l=l, m=m) if status: return jsonify({"code": 200, "data": data, "err": None}) else: return jsonify({"code": 500, "data": None, "err": data})
好像挺好的,基本满足要求了,但是再route上加装饰器,那就改变不了参数的值了,虽然有些参数不一定符合要求,但是简单修补一下还是可以用的,还得继续寻找能够改变入参的方式,第一反应是在装饰器中修改request.values或者request.json的值,让进入到主函数后获取更新后的值,上下求索未得门径,request.value.update方法是被禁用的,继续看源码,后面的实现使用了dict的复杂封装,不好改啊,这样太绕了,还是直接调用函数吧,不玩装饰器了.于是又了版本3
版本3
def validator_func(rules, strip=True, default=(False, None), diy_func=None, release=False): """函数版-返回dict,代替request.values/request.json :param rules:参数的校验规则,map :param strip:对字段进行前后过滤空格 :param default:将"" 装换成None :param diy_func:自定义的对某一参数的校验函数格式: {key:func},类似check, diy_func={"a": lambda x: x + "aa"}) :param release:发生参数校验异常后是否依然让参数进入主流程函数 """ args_dict = OrderedDict() try: if request.values: args_dict.update(request.values) if request.json: args_dict.update(request.json) if release: args_dict_copy = copy.deepcopy(args_dict) # 下面流程异常时,是否直接使用 原参数传入f # fixme # strip if strip: for k in args_dict: if isstr(args_dict[k]): args_dict[k] = args_dict[k].strip() # default if default[0]: for x in args_dict: if args_dict[x] == "": args_dict[x] = default[1] # diy_func if diy_func: for k in args_dict: if k in diy_func: args_dict[k] = diy_func[k](args_dict[k]) # rules if rules: result, err = validate(rules, args_dict) if not result: return False, err except Exception as e: print("verify_args catch err: ", traceback.format_exc()) # TODO if release: return True, args_dict_copy else: return False, str(e) return True, args_dict@app.route("/func", methods=["GET", "POST", "PUT"])def func_example(): result, request_args = validator_func(rules=rules_example, strip=True) # 姿势 2 if not result: return jsonify({"code": 500, "data": None, "err": request_args}) a = request_args.get("a") b = request_args.get("b") c = request_args.get("c") d = request_args.get("d") e = request_args.get("e") f = request_args.get("f") g = request_args.get("g") h = request_args.get("h") i = request_args.get("i") j = request_args.get("j") k = request_args.get("k") l = request_args.get("l") m = request_args.get("m") status, data = todo(a=a, b=b, c=c, d=d, e=e, f=f, g=g, h=h, i=i, j=j, k=k, l=l, m=m) if status: return jsonify({"code": 200, "data": data, "err": None}) else: return jsonify({"code": 500, "data": None, "err": data})
嗯,还行吧,就是不怎么优雅,还是有点喜欢装饰器版本,但是苦于能力有限,不想看ImmutableMultiDict,MultiDict的实现,还是将第一个版本融合一下吧,装饰route不行,装饰todo还不行吗.于是有了版本4
版本4
def validator_args(rules, strip=True, default=(False, None), diy_func=None, release=False): """针对普通函数的参数校验的装饰器 :param rules:参数的校验规则,map :param strip:对字段进行前后过滤空格 :param default:将"" 装换成None :param diy_func:自定义的对某一参数的校验函数格式: {key:func},类似check, diy_func={"a": lambda x: x + "aa"}) :param release:发生参数校验异常后是否依然让参数进入主流程函数 """ def decorator(f): @wraps(f) def decorated_func(*args, **kwargs): if release: args_bak = args[:] kwargs_bak = copy.deepcopy(kwargs) # 下面流程异常时,是否直接使用 原参数传入f # fixme try: args_template = f.func_code.co_varnames except: args_template = f.__code__.co_varnames args_dict = OrderedDict() try: for i, x in enumerate(args): args_dict[args_template[i]] = x sorted_kwargs = sort_by_co_varnames(args_template, kwargs) args_dict.update(sorted_kwargs) # strip if strip: for k in args_dict: if isstr(args_dict[k]): args_dict[k] = args_dict[k].strip() # default if default[0]: for x in args_dict: if args_dict[x] == "": args_dict[x] = default[1] # diy_func if diy_func: for k in args_dict: if k in diy_func: args_dict[k] = diy_func[k](args_dict[k]) # rules if rules: result, err = validate(rules, args_dict) if not result: return False, err except Exception as e: print("verify_args catch err: ", traceback.format_exc()) if release: return f(*args_bak, **kwargs_bak) else: return False, str(e) return f(*args_dict.values()) return decorated_func return decorator @validator_args(rules=rules_example, strip=True) # 姿势 3def todo(a, b, c, d, e, f, g, h, i, j, k, l, m): return True, {"a": a, "b": b, "c": c, "d": d, "e": e, "f": f, "g": g, "h": h, "i": i, "j": j, "k": k, "l": l, "m": m}
哎,就这样吧,打包一下,随便选吧,爱用哪个用哪个,反正我都写出来了.简单说就是:
- validator_func 针对flask的request.json/requests.values的参数校验以及修改,修改的方式有限,可以自己控制
- validator_wrap 是针对flask route的装饰器,针对request.json/requests.values的参数校验,只是校验,当然校验的方式可以自己写扩展
- validator_args 针对普通函数的参数校验以及修改,注意不要使用python传参的高级特性(一个参数对应多个值),这个方法可以脱离flask使用,所以如果需要就直接copy过去吧.
嗯,最后还是分享一下到git上吧, 喜欢的点个star.